
Rootkit Hunting
vs.

Compromise Detection

Joanna Rutkowska
invisiblethings.org

Black Hat Federal 2006, Washington D.C., January 25th 2006.

Joanna Rutkowska, invisiblethings.org, 2006. 2

What this talk is going to be about?

Showing demos of new malware which is Stealth by Design (=
no classic rootkit technology used, but still fully stealthy),

Classifying existing rootkit-like malware and discussing how
current anti-rootkit technology works against them,

Introducing the need for Explicit Compromise Detection
(ECD),

Releasing new System Virginity Verifier (SVV 2.2) and playing
some demos how it fights current malware,

Talking about how difficult is to implement ECD on a Windows
box and why MS should help us…

Joanna Rutkowska, invisiblethings.org, 2006. 3

Simple definitions…

Backdoors – give remote access to the compromised
machine (smarter ones typically use covert channels),

Localstuff – key loggers, web password sniffers, DDoS agents,
Desktop camera, eject, etc… (can be more or less fun),

Rootkits – protects backdoors and localstuff from detection.

Method of infection – exploit, worm, file infector (virus), etc... –
not important from our point of view.

We will see later that rootkits are not necessary to achieve full
stealth…

Joanna Rutkowska, invisiblethings.org, 2006. 4

Different approaches to
Compromise Detection…

Look around in the system
Process Explorer, netstat, etc… (this can be done automatically by
smart HIDS),

Don’t be tempted to skip this step as it’s easy to overlook very simple
malware when focused on advanced kernel detection only.

Cross view based approaches
Look for rootkit side-effects,

Detect hidden files, registry keys, processes.

Signature based approaches
Scan for known rootkit/backdoor/localstuff engines.

Check Integrity of Important OS elements
Explicit Compromise Detection (ECD)

Joanna Rutkowska, invisiblethings.org, 2006. 5

What do we really need?

Surviving system restart?

Process Hiding?

Win32 Services hiding?

Sockets hiding?

Kernel module/DLL hiding?

Kernel filter drivers hiding?

Joanna Rutkowska, invisiblethings.org, 2006. 6

Surviving the reboot?

Should malware really care?

In many companies people do not turn their computers off at
night,

And even if they do, how much damage can be done when
having a backdoor for several hours and not being able to
detect it?

Servers are very rarely restarted,

And we also have worms…

Joanna Rutkowska, invisiblethings.org, 2006. 7

Theoretical Scary Scenario…

Joanna Rutkowska, invisiblethings.org, 2006. 8

Network infected

1

2

3

4

Joanna Rutkowska, invisiblethings.org, 2006. 9

Client re-infection

1

2

Joanna Rutkowska, invisiblethings.org, 2006. 10

Digression: Passive Covert Channels

Passive Covert Channels idea:
http://invisiblethings.org/papers/passive-covert-channels-linux.pdf

NUSHU (passive covert channel POC in TCP ISNs for Linux
2.4 kernels):
http://invisiblethings.org/tools/nushu.tar.gz

How to detect NUSHU (and how to improve it so it will not be
detectable) by Steven Murdoch et al:
http://www.cl.cam.ac.uk/users/sjm217/papers/ih05coverttcp.pdf

Another amazing paper about NUSHU detection using NN
(Eugene Tumoian & Maxim Anikeev):
http://www.rootkit.com/vault/90210/neural_networks_vs_NUSHU.pdf

Maybe network based detection (not signature based!) is the
future?

Joanna Rutkowska, invisiblethings.org, 2006. 11

Surviving the reboot…

Still not convinced that we shouldn’t care about restart
survival?

Ok, we want to place a trigger somewhere on the file system,
but we don’t want to be caught by X-VIEW detection (ala RkR
or Black Light)…

Of course it’s trivial to cheat those tools (in more or less
generic way), but we want a “stealth by design” solution…

On average desktop computer there are thousands of files
executed every day...

So, why not try using a good polymorphic file infector for one
of them to start our rootkit/malware?

Watch out for files which are digitally sign (all system binaries)!

Joanna Rutkowska, invisiblethings.org, 2006. 12

File infectors

Mistfall engine, by z0mbie, is several years old, but is still
considered among AV people as one of the most challenging file
infectors!

Unofficial statistics: most of the current AV products is able to detect
only about 98% of all mistfall infections…

…although mistfall is known for years…

How about a private, highly polymorphic, EPO file infector then?

Can AV detect infections by such unknown engine?

My bet is NO!

Consequence – elegant, stealth by design technique for reboot
survival on desktop machines for your favorite malware,
undetectable by all X-view diff approach by definition…

Joanna Rutkowska, invisiblethings.org, 2006. 13

What about hiding other stuff?

Process Hiding?

Win32 Services hiding?

Sockets hiding?

Kernel module/DLL hiding?

Kernel filter drivers hiding?

Joanna Rutkowska, invisiblethings.org, 2006. 14

Hidden Processes?

It’s convenient to be able to run (in a stealthy manner) an arbitrary
process…

However, it should always be possible to find such extra hidden
processes executing inside OS (as the OS should be aware of this
process):

scheduler (but look at smart PHIDE2)

Object manager

So, do we really need hidden processes?

Maybe we can use injected threads into some other processes to do
the job? (compile your favorite tools with .reloc sections)

Or even better – if we have a smart backdoor (e.g. kernel NDIS
based) why not build most of the functionality into it? [see the demo
later]

Joanna Rutkowska, invisiblethings.org, 2006. 15

Hidden Win32 Services?

Services are very easily detectable – much easier than just
ordinary processes.

But, if we agreed that we don’t need processes then it should
be obvious that we don’t need services too.

Joanna Rutkowska, invisiblethings.org, 2006. 16

Hidden Sockets?

That was always a very bad idea!

Hiding something which is still visible from a network point of
view is a bad idea.

Use covert channels (passive if possible)

If you need to do it in a traditional way, use ‘knock scenario’
and connect back.

Joanna Rutkowska, invisiblethings.org, 2006. 17

Hidden modules (kernel and DLLs)?

Very bad idea – very easy to find.
It’s even better not to hide kernel modules at all (just place
them in system32\drivers so they look not suspicious)!
And if one wants real stealth – why use modules at all?
Load, allocate a block of memory, copy and relocate and
unload the original module (no traces left in kernel).
Or do the same when exploiting kernel bug.

Related thing: resistance to signature based scanners
Shadow Walker,
Cut and Mouse (detect when somebody starts reading memory
near you and relocate),
How to do it without touching IDT?

Joanna Rutkowska, invisiblethings.org, 2006. 18

Hidden kernel filters?

People use them usually to:
hide files (but not registry)

hide sockets

Implement simple network backdoors

install key loggers

We don’t need them!

No need to bother to hide them.

Joanna Rutkowska, invisiblethings.org, 2006. 19

Stealth malware without rootkits

We don’t need all those rootkit technologies, but still we’re
capable of writing powerful malware!
Imagine a backdoor which

uses covert channel
has its own TCP/IP stack implementation
has its own implementation of all useful ‘shell’ commands (ls,
mkdir, ps, kill, put, get, etc…)
has ability to manually create short-life processes (not hidden)
Implemented as relocate-able code – no extra module in the
kernel.

No need to hide anything! (process, sockets, modules,
services)
Let’s see the demo now…

Joanna Rutkowska, invisiblethings.org, 2006. 20

DEMO: Pretty Stealthy Backdoor

Introducing the backdoor

Showing tcpdump trace from another
machine

Showing no traces in the system log

Showing no signs of kernel module
reminders (modGREPER)

Showing no hidden processes detected

Bypassing Personal Firewalls
Norton PFW

ZA PFW

Joanna Rutkowska, invisiblethings.org, 2006. 21

Things which can be subverted

File system:
• boot sectors
• file infections
• ASEPs (mostly registry keys)

BIOS flash, ?

CODE sections:
• processes
• kernel
• kernel drivers

DATA sections:
• processes
• kernel
• kernel drivers

CPU registers: Debug Registers, Some MSRs, ?

volatile
persistent

Joanna Rutkowska, invisiblethings.org, 2006. 22

Things which can be subverted…

Persistent storage (file system, etc) subversion is necessary
only to reboot survival (nothing more).

It’s the volatile storage which is crucial to system compromise
(we can’t have a backdoor which is not in memory).

Today many detection tools are focused on file system
verification (registry is also file system).

Joanna Rutkowska, invisiblethings.org, 2006. 23

Interaction with OS infrastructure

Pretty Stealth Backdoor

The only interaction
between the backdoor
and OS! Just few
DWORDs!

DATA

CODE

Joanna Rutkowska, invisiblethings.org, 2006. 24

Lessons learned

Malware doesn’t need to modify code sections (we can
always verify code section integrity)

The real problem is malware which modifies data sections
only.

We saw a backdoor which modified only few DWORDs
somewhere inside NDIS data section!

Joanna Rutkowska, invisiblethings.org, 2006. 25

Malware classification proposal

Type 0: Malware which doesn’t modify OS in any
undocumented way nor any other process (non-intrusive),

Type I: Malware which modifies things which should never be
modified (e.g. Kernel code, BIOS which has it’s HASH stored
in TPM, MSR registers, etc…),

Type II: Malware which modifies things which are designed to
be modified (DATA sections).

Type 0 is not interesting for us,

Type I malware is/will always be easy to spot,

Type II is/will be very hard to find.

Joanna Rutkowska, invisiblethings.org, 2006. 26

Type I Malware examples

Hacker Defender (and all commercial variations)

Sony Rootkit

Apropos

Adore (although syscall tables is not part of kernel code
section, it’s still a thing which should not be modified!)

Suckit

Shadow Walker – Sherri Sparks and Jamie Butler
Although IDT is not a code section (actually it’s inside an INIT
section of ntoskrnl), it’s still something which is not designed
to be modified!

However it *may* be possible to convert it into a Type II (which
would be very scary)

Joanna Rutkowska, invisiblethings.org, 2006. 27

Fighting Type I malware

VICE

SDT Restore

Virginity Verifier 1.x [see the DEMO later]

Patch Guard by MS on 64 bit Windows

Today’s challenge: false positives

Lots of nasty apps which use tricks which they shouldn’t use
(mostly AV products)

Tomorrow: Patch Guard should solve all those problems with
false positives for Type I Malware detection…

… making Type I Malware detection a piece of cake!

Joanna Rutkowska, invisiblethings.org, 2006. 28

Patch Guard

By Microsoft, to be (is) included in all x64 Windows
http://www.microsoft.com/whdc/driver/kernel/64bitPatching.mspx

Actions forbidden:
Modifying system service tables

Modifying the IDT

Modifying the GDT

Using kernel stacks that are not allocated by the kernel

Patching any part of the kernel (detected on AMD64-based
systems only) [I assume they mean code sections here]

Can PG be subverted? Almost for sure.

But this is not important!

Joanna Rutkowska, invisiblethings.org, 2006. 29

Patch Guard

Important thing is: PG should force all the legal (innocent) apps not
to use all those rootkit-like tricks (which dozens of commercial
software use today)

PG should clear the playground, making it much easier to create
tools like SVV in the future,

It won’t be necessary to implement smart heuristics to distinguish
between Personal Firewall-like hooking and rootkit-like hooking.

So, even if we see a POC for bypassing PG (I’m pretty sure we will
see sooner or later) in the future, it will not make PG useless…

UPDATE: we’ve just seen such POC by skape & Skywing:

http://www.uninformed.org/?v=3&a=3&t=pdf

It will only prove my statement that it’s good to have several
detection tools (from different vendors preferably)

Joanna Rutkowska, invisiblethings.org, 2006. 30

System Virginity Verifier Idea

Code sections are read-only in all modern OSes

Program should not modify their code!

Idea: check if code sections of important system DLLs and system
drivers (kernel modules) are the same in memory and in the
corresponding PE files on disk

Don’t forget about relocations!
Skip .idata

etc…

Joanna Rutkowska, invisiblethings.org, 2006. 31

Extending SVV – SVV 2.2

Check not only .text sections, because there are more things
which should stay untouched…

Check all the other code sections (PAGE*, etc…)

IDT verification

MSR registers (syscall hooking on XP and 2003)

Get it from invisiblethings.org after the con :)

Joanna Rutkowska, invisiblethings.org, 2006. 32

DEMO: Fighting Type I Malware

Demo showing SVV2 detecting some malware:
Apropos Rootkit

AFX2005

EEYE BootRoot

Demo showing how SVV2 handles potential false
positives introduced by software like Personal
Firewall, etc…

Demo showing that sometimes it’s virtually
impossible to distinguish between PF and a
rootkit-like hooking

Joanna Rutkowska, invisiblethings.org, 2006. 33

Type II Malware examples

NDIS Network backdoor in NTRootkit by Greg Hoglund
(however easy to spot because adds own NDIS protocol)
Klog by Sherri Sparks – “polite” IRP hooking of keyboard
driver, appears in DeviceTree (but you need to know where to
look)
He4Hook (only some versions) – Raw IRP hooking on fs
driver
prrf by palmers (Phrack 58!) – Linux procfs smart data
manipulation to hide processes (possibility to extend to
arbitrary files hiding by hooking VFS data structures)
FU by Jamie Butler
PHIDE2 by 90210 – very sophisticated process hider, still
however easily detectable with X-VIEW...

Joanna Rutkowska, invisiblethings.org, 2006. 34

Fighting Type II Malware

There are three issues here:
To know where to look

To understand what we read

To be able to read memory

But… we all know how to read memory, don’t we?

More on this later, now let’s look at some demos…

Joanna Rutkowska, invisiblethings.org, 2006. 35

DEMO: Type II Malware Detection

Demo showing spotting klog using
Device Tree and KD

Demo showing he4Hook detection
using KD

Joanna Rutkowska, invisiblethings.org, 2006. 36

Type II Malware Detection cont.

“To know where to look” issue

On the previous demo, we somehow knew where to look…

…but there is lots of data inside the OS…

…how to make sure that we check all the potential places?

Joanna Rutkowska, invisiblethings.org, 2006. 37

Memory Reading Problem (MRP)

What about those popular functions:
__try/__except – will not protect from BugChek 0x50

MmIsAddressValid() – will introduce a race condition (and
we also won’t be able to access swapped memory)
MmProbeAndLockPages() – may crash the system for various
reasons, TLB corruption being one of them!

The truth is: We can’t read arbitrary Windows kernel memory
without the risk of crashing the system!

But Why? We’re in ring0, we should be able to do everything,
right?

If it’s such a problem to read kernel memory, how is it
possible that all those Windows machines work?!

Joanna Rutkowska, invisiblethings.org, 2006. 38

MRP cont.

The problem is not what can we physically do, but rather what
we can do from the “protocol point of view”,

And kernel was not designed to allow 3rd parties to read
memory areas which belong to somebody else (reading NDIS
data structure by somebody who is not NDIS itself),

3rd party reading memory, which it doesn’t own, may be
subject to various race conditions or cause TLB corruption,

So, before we try to read something we really need to think it
over to see if we really can safely read it!

It seems that Microsoft's help is very necessary here.

Joanna Rutkowska, invisiblethings.org, 2006. 39

MRP – what Microsoft can do?

It’s a hard problem – no easy solution exists.

MS should put some effort into building an infrastructure
which would allow 3rd party tools for kernel memory
verification/scanning.

This infrastructure should be easy to verify (e.g. check if it
hasn’t been already hooked)

This “infrastructure” doesn’t have to be an API, it can also be
a set of guidelines regarding how to properly synchronize with
the Memory Manager and read the memory…

Joanna Rutkowska, invisiblethings.org, 2006. 40

Stealth by Design vs. Type II Malware

“Stealth by Design” != “Type II”

Lots of Type II malware today is not SbD:
All the process hiders (FU, PHIDE2)

Files hider (he4hook)

Some Type I malware is SbD:
Eeye bootroot NDIS backdoor

SbD is about not hiding anything – avoiding cross view
detection by design.

X-VIEW detection is useless when detecting SbD malware.

Explicit Compromise Detection (ECD) is useful here.

Joanna Rutkowska, invisiblethings.org, 2006. 41

Stealth by Design vs. Type II Malware

Type II is about implementing malware so that there is no
easy way to detect it by performing an integrity scan (of
filesystem, code sections, etc...)

Type II is about avoiding ECD.

Type II challenge: modify only those parts of the OS, where
it’s hard to detect the modifications!

X-VIEW may sometimes work.

SbD Malware, which is a type II, may be extremely difficult to
detect

X-VIEW doesn’t work

ECD is usually difficult

Joanna Rutkowska, invisiblethings.org, 2006. 42

File infectors…

Advanced EPO File Infectors are SbD…

…but if infected file has a digital signature (like all Windows
system files), then even the most advanced virus is a type I
only!

Joanna Rutkowska, invisiblethings.org, 2006. 43

Stealth by Design vs. Type II
Malware

X-VIEW useless.

ECD may be difficult.

Network based
detection may be
easier?

X-VIEW useless.

ECD easy and effective.

Stealth By
Design

ECD may be difficult

X-VIEW easier and
more effective.

ECD easy and effective.

X-VIEW works well too.

Classic Rootkit
Technology

Type II MalwareType I Malware

ECD = Explicit Compromise Detection
X-VIEW = Cross View Based Detection

Joanna Rutkowska, invisiblethings.org, 2006. 44

DEMO: Pretty Stealthy Backdoor Again

Showing that it’s a type II backdoor…
Code verification
SDT verification
IDT verification
NDIS protocols (btw, not a strict Type II requirement)

We’ve already seen it’s a Stealth by Design malware…
So where is the backdoor?

touching the backdoor (using KD)…
Having seen this, we still cannot come up with a detection tool, mostly
because of the MRP!
We cannot also use PFW for preventing this backdoor, as this is “the
last one wins” game (not “the first one wins”!)
We have seen only few DWORDs of the backdoor, where is the rest?
Even if we knew this is not a good method for detection (polymorphism,
etc).

Joanna Rutkowska, invisiblethings.org, 2006. 45

Challenge

Create a list of where should we look (NDIS data structures,
device IRPs, attached filters, …

What else? Is the list finite?

OMCD project
Open Methodology for Compromise Detection

http://isecom.org/omcd/

But do we really need *Open* Methodology? Should such a
project be public?

But on the other hand…

Joanna Rutkowska, invisiblethings.org, 2006. 46

Challenge

Maybe we shouldn’t worry about advancement in malware
technology?

Commercial Hacker Defender shows another trend:

Implement lots of Simple and Stupid Implementation Specific
Attacks (ISA) against all the tools on the market…

So, all commercial AV products are ineffective against custom
malware (which one can buy for $$$),

Most of that “commercial malware” is detectable by private
detectors (which one can buy for $$$$-$$$$$),

Private detectors can’t cost too little!

Joanna Rutkowska, invisiblethings.org, 2006. 47

What OS vendors can do?

Make it possible to reliably read kernel memory
We (ISVs) cannot do much when we’re blind!
IsSystemInfected() API is *really* not a good idea!

Design system in such a way that the crucial parts are easily
verifiable:

Export symbols like
IDT (helps to verify IDT integrity)
KiServiceTable, (SDT integrity)
KiFastCallEntry (MSR_SYSENTER verification)

This will help ISVs with writing system integrity checkers
This will *not* make creating rootkits easier, as rootkit authors already
know how to find IDT and Service Table and all the other interesting
stuff!

Exploiting hardware to verify kernel memory integrity may be a good
idea (TPM?)

Joanna Rutkowska, invisiblethings.org, 2006. 48

Losers and Winners

Mr. and Mrs. Smith always lose!

Large companies may win (using private detectors)…

Authors of ISA-based malware earn money and laugh from
AV companies!

Providers of custom rootkit/compromise detection services
laugh from ISA-based malware :)

AV may (at some point) become providers of those custom
detectors for large companies…

Everybody waits for the next generation OS which will
introduce more then two CPU privileges modes (4 years?),
hopefully eliminating ISA (but not SbD type II malware…)

Joanna Rutkowska, invisiblethings.org, 2006. 49

Thank you
for your time!

